
Project Integration Architecture:
Distributed Lock Management, Deadlock Detection,

and Set Iteration

William Henry Jones

April 26, 1999

1 Abstract

The migration of the Project Integration Archi-
tecture (PIA) to the distributed object environ-
ment of the Common Object Request Broker
Architecture (CORBA) brings with it the nearly
unavoidable requirements of multi-accessor,
asynchronous operations. In order to maintain
the integrity of data structures in such an en-
vironment, it is necessary to provide a locking
mechanism capable of protecting the complex
operations typical of the PIA architecture. This
paper reports on the implementation of a lock-
ing mechanism to treat that need, and upon
the ancillary features necessary to make that
mechanism work.

2 Introduction

The Project Integration Architecture (PIA) is
an object-oriented architecture within which
practically any engineering application may be
wrapped. Information in this architecture is
provided not only through the isolated objects
which it presents, but also through the struc-
tural relationships of those objects to one an-
other. For instance, while engineering data
is maintained in a configuration object in a
conceptually-flat, balanced, binary tree, the
logical organization of that data into structural
units intuitive to the application user is re-

vealed by an accompanying, n-ary tree of iden-
tification objects. The revelation of informa-
tion through structure brings with it the con-
squence that many, if not all, PIA transactional
operations involve sets of objects rather than
single objects.

In migrating the Project Integration Architec-
ture to the Common Object Request Broker Ar-
chitecutre (CORBA) environment of distributed
objects, the complexities of multi-accessor op-
erations are brought into the design mix. While
one might wish to serve the objects of a partic-
ular PIA application instance to a single client,
nothing in the basic CORBA specification al-
lows for such a restriction. Thus, it is appropri-
ate, if perhaps not explicitly necessary, to pro-
vide for the locking of such transactional object
sets.

A simple, mutual-exclusion semaphore lock-
ing capability, as is commonly provided in
many software products and environments, is
not appropriate to the task of locking multiple
objects. Such single locks control single enti-
ties. Thus, for a single semaphore to be effec-
tive, it would have to be understood as protect-
ing the single set of objects to manipulated in
a transaction; however, since that object set is
dynamically determined at the time the trans-
action is proposed, such a single lock can not
be pre-established and recognized by the multi-
ple clients which might interfer in such a trans-
action. Further, since another client’s inter-

1



1

2

3

4

5

Semaphore A

Semaphore B

Figure 1: Which Semaphore for Intersecting
Sets?

ference might involve a distinct object set not
identical to the first set, yet nevertheless inter-
secting that first locked set, the efficacy of the
single, semaphore-like lock approach is clearly
lacking. This is illustrated in Figure 1.

1

2

3

4

5

Client A

Client B

Figure 2: Client Transactions Compete for Dis-
tributed Locks

To control dynamically selected sets of ob-
jects, it is necessary to provide a matching set
of locks, each lock dedicated to a particular ob-
ject. By having a distinct, identifiable lock as-
sociated with each indivisible object, compet-
ing transactions may contend with each other
for control of the individual objects necessary

to make the transaction go forward, as is de-
picted in Figure 2. Additionally, it is desirable
for such locks to provide not merely a yes/no
response to an across-the-board usage request,
but a graded set of access levels to the con-
trolled object so that transactions with com-
patible needs (in particular, read access) may
progress together while assuring that transac-
tions with conflicting requirements (in particu-
lar, write or delete access) are excluded.

Another desirable aspect of a lock mecha-
nism is that it be distributed, even as was im-
plicitly suggested in Figure 2. This is, per-
haps, more clearly seen when the statement is
examined from the contrapositive view: a cen-
tralized lock management system is very unde-
sirable. In a centralized lock system, the rate
at which transactions can proceed very rapidly
becomes determined by the rate at which the
centralized lock system can process lock op-
erations. By distributing lock operations, the
operational resources of the transaction may
be brought to bear upon the lock operation,
too. Thus, as transactional resources grow
(through multiply-threaded servers and multi-
server environments), lock processing resouces
grow proportionately.

Client A

Client B1

2

Figure 3: A Simple Deadlock Condition

With the introduction of multiple-lock envi-
ronments, the possibility of deadlock, an irre-
solvable conflict in the holding and requesting
of locks between two or more clients, is intro-
duced as well. In its simplest form (depicted
in Figure 3), a deadlock occurs when client A
holds a lock on object 1 and desires a lock on

2



object 2 while client B holds a lock on object
2 and desires of lock on item 1. As the ex-
ample suggests, the detection of deadlocks is
relatively straightforward; however, it, in turn,
brings with it the problem of iteration upon a
dynamically changing set, in this case, the set
of lock holders. Furthering the example, there
may be a client C holding a lock on object 2
with no designs on object 1. The transaction of
client C may run to completion and release the
lock on object 2 while client A is performing its
evaluation of the deadlock condition.

Reviewing all of the above, distributed lock
management brings with it a series of interest-
ing problems. Each are amenable to solution
and, while each solution is no particular act of
genius, the effort as a whole may be instruc-
tive as to the issues that must be confronted
in providing meaningful locks in a distributed,
structural, object environment.

3 The Solution

The solution of the lock management problem
posed above involves three interfaces in the
CORBA environment: a lock, a lock context,
and a positional iterator. As shown in Figure
4, an instance of the lock interface, GLock, is
attached to a lockable interface instance. A
lock context associated with a client is supplied
to the lockable instance to provide a context
within which a lock may be held. A positional
iterator instance (not shown in the figure) is
created internally by the lock context and is ini-
tialized and maintained by the lock in the event
that an evaluation of a potential deadlock con-
dition must be made.

3.1 The Lock and Lock Context

The lock interface, GLock in this implementa-
tion, provides, as would be expected, the ba-
sic locking function. That is, it provides a de-
cision to a requester whether or not, at the

Client

GLockCtx

Lockable Object

GLock

Figure 4: Relationship of Principal Distributed
Lock Components

present time, a requested form of access can
be granted.

This decision form of lock management is in
opposition to the alternative blocking form in
which a process requesting a resource lock is
suspended until the lock is granted or a dead-
lock exception (of whatever form) is thrown.
Here, the GLock service responds to a lock re-
quest not by blocking the requester until the
lock can be granted, but by simply issuing
a yes-or-no decision. The decision form was
necessary because of the lack of any generic,
cross-platform capacity for suspending an ex-
ecuting thread and queuing it on some subse-
quent lock event.

The GLock interface, as it is currently imple-
mented, recognizes five locking levels: Release,
Reference, Read, Write, and Delete.

1. The holding of a Release lock grants, para-
doxically, a complete disassociation of the
requester from the lockable entity. It is in-
troduced into the lock design for the clar-
ity of the implementation. By its nature,
a Release lock may be obtained by any re-
quester at any time. Thus, a new requester
may be immediately granted a Release lock
and, as a result, the lock granting process

3



(and lock releasing process) may be trans-
formed in all cases to a lock conversion
process.

2. The holding of a Reference lock grants to
the requester the right to expect the lock-
able entity to continue to exist. The locked
entity may be read, written, and otherwise
change its state as a result of operations
carried out by other clients obtaining ap-
propriate locks, but it may not cease to
exist under the operations appropriate to
the granting of a Delete lock. Multiple re-
questers may hold this lock simultaneously
and this lock may be held in the presence
of other Release, Read, and Write locks.

3. The holding of a Read lock grants the right
to the requester to obtain, but not change,
the state of the lockable entity. Multiple re-
questers may hold this lock simultaneously
and this lock may be held in the presense
of one or more Reference locks; however,
this lock may not be held in the presence
of any Write or Delete lock.

4. The holding of a Write lock grants the right
to the requester to obtain, modify, and or
set the state of the lockable entity. At most
one requester may hold a Write lock at a
given time and the lock may only be held
in the absense of any and all other Read
and Delete locks.

5. The holding of a Delete lock grants the right
to the requester to remove from operation
and discard (in whatever sense) the lock-
able entity. Subsequent to the operations
permitted by a Delete lock, the expectation
is that the lockable entity will no longer ex-
ist in any meaningful, operational sense.
At most one requester may hold a Delete
lock at a given time and the lock may only
be held in the absense of any and all other
Reference, Read, and Write locks.

Largely because of the Release lock device,
the lock request process can be implemented,

in its essense, as a simple finite state machine
based upon the following state variables: the
current lock granted to the requester, the lock
requested by the requester, and the current
lock state of the GLock instance. With the ad-
dition of a few amenities such as the use of a
mutual exclusion semaphore to protect the in-
ternals of the particular GLock instance, the
unconditional granting of a Release locks to re-
questers with no current lock, and the discard-
ing of any granted Release locks at the conclu-
sion of the lock process, the basic function of
the GLock interface is complete.

A small further adjustment exists in the ba-
sic lock process. Because of the multiple-
reader, single-writer protocol specified above, it
is possible for multiple, sequential Read locks
to block a Write lock for an indefinite period of
time, even though no fundamental write inhi-
bition exists. To adjust for this problem, the
implemented GLock interface will suspend the
granting of Read locks for a short period of time
after the refusing of a Write lock request. This
is done in the expectation that no requester will
simply make one request and give up. Instead,
it is expected that the Write lock request will
be repeated shortly during the period in which
Read locks are being declined and that, during
that period, existing Read locks will be com-
pleted and released, allowing the Write lock re-
quest to be granted. It is further supposed that
the write operation will complete shortly and
that refused Read locks will be granted on sub-
sequent request.

It should be noted explicitly for the purposes
of later discussion that the lock instance main-
tains a map of lock contexts holding locks on it.
This map includes the level of lock each such
context holds.

The lock context interface, GLockCtx, pro-
vides the operating context in which the set of
locks necessary for a single, logical transaction
is held. Typically, a single lock context is uti-
lized by a client to hold the locks of that client.
In terms of basic function, the lock context is

4



not particularly complicated.
The lock context handles the mechanics of

requesting a lock on a particular GLock lock
instance, implementing the retry protocol men-
tioned above when locks are refused. Thus,
when the lock context reports that a lock has
been refused, that lock has already been re-
quested and denied several times.

Also the lock context provides a programmat-
ically useful lock-nesting concept. A particu-
lar operation may request a lock nest and ob-
tain multiple locks within it. When the opera-
tion is complete, it may rely on the unnesting
operation of the lock context to release those
locks to their previous state. Through a pro-
grammatic slight-of-hand, this nesting capabil-
ity may be used to assure the release of ob-
tained locks even when exceptions are thrown
past the operational scope in which the locks
were obtained.

3.2 Deadlock Detection

When a lock context repeatedly is refused a
lock it is requesting, it is of interest to deter-
mine whether such a refusal represents a dead-
lock condition (as depicted in Figure 3 on page
2), or whether it is the result of some more in-
definite (and probably irresolvable) condition.
This task falls (in this implementation) to the
lock context interface, though the facilities of
the lock interface provide key information in
this operation, and it is in that lock context that
a deadlock declaration is made.

It is true that, if client A is deadlocked be-
cause of client B, client B is then also dead-
locked because of client A; however, the ap-
proach implemented here leaves it to each
client’s lock context to detect that reciprocal
truth for itself. Thus, it may be that if client A
detects and resolves the deadlock with client B,
client B may not ever necessarily identify that
the reciprocal deadlock condition existed.

As mentioned previously, the simplest form
of deadlock occurs when client A holds a lock

on object 1 and requests a lock on object 2
while client B holds a lock on object 2 while re-
questing a lock on object 1. The implemented
lock system refines this basic example to in-
clude the concept of conflicting locks based
upon the multiple-reader/single-writer proto-
col the system implements. Clearly, if clients A
and B are holding and requesting Read locks,
no deadlock condition exists.

Client A

Client B1

11
12

13

2

Client C

Figure 5: Multiple Direct Deadlock Conditions

The next step in widening the deadlock de-
tection process is to recognize, as depicted in
Figure 5, that there may be multiple holders
of conflicting locks on the object upon which a
particular client desires a lock. That is, client A
holding locks on objects 1, 11, 12, and 13 and
desiring a lock on object 2 may find that both
clients B and C hold conflicting locks on object
2 and either one of them may cause a dead-
lock by requesting a lock on any of the objects
locked by client A. Additionally, it is important
to note that the nature of the conflicts between
client A and client B and between client A and
client C need not be the same.

While all of this is already an interesting algo-
rithmic exercise, it is still not a sufficient defi-
nition of a deadlock condition. As shown in Fig-
ure 6, deadlock can result from a chain of locks
held and requested. That is, client A holds a
lock on object 1 and requests a lock on object 2
while client B holds a conflicting lock on object

5



Client A

1

2
Client B

3

Client C

4

Client X

Figure 6: A Chain of Deadlock Conditions

2 and requests a lock on object 3. Meanwhile
client C holds a conflicting lock on object 3 and
requests a lock on object 4, and so on, until,
at last, some client X holds a conflicting lock
on an object in the chain and requests a lock
on object 1, which cannot be obtained because
client A holds the orginal conflicting lock on ob-
ject 1.

In quasi-technical terms, let a directed graph
be formed in which the initial node is the lock
context performing the deadlock analysis and,
for each such node of the graph, the immedi-
ate successor nodes are those nodes holding a
conflicting lock on the lock instance of which
the subject node is requesting a lock. A dead-
lock then exists if that graph proves to be cyclic
at the initial node.

As noted previously, it is to facilitate this
computation that lock instances retain a map
of lock contexts holding locks on the present-
ing lock instance and record the kind of lock
held by each such lock context. This is exactly
the information required for the deadlock com-
putation. Further, lock contexts are sorted by

lock level so that the set of lock contexts hold-
ing conflicting locks with a specified lock level
may be quickly identified.

The resolution of the deadlock condition is
not a particular interest in this paper. Cur-
rently, the expectation is that deadlocks will be
resolved by releasing and re-obtaining all of a
client’s locks. The overall project from which
this work is reported has not reached the point
at which this issue has been decided and, in-
deed, it may be that multiple resolution strate-
gies are possible.

3.3 Set Iteration

The implementation of the deadlock algorithm
is, itself, reasonably straightforward; however,
one issue does come up: the set of lock holders
is, itself, not constant with time. As a partic-
ular client makes its way through the calcula-
tion, other clients may either release or obtain
locks relevant or otherwise. A significant ele-
ment of the implementation is, thus, not simply
implementing the algorithm, but making that
algorithm tolerant of the fact that the problem
may be changing as it is computed. In particu-
lar, another client may already have identified
its reciprocal deadlock condition and be in the
act of releasing locks as its resolution method.

This is, in fact, a particular case of a general
problem in multi-accessor environments: iter-
ations upon a set must be tolerant of the fact
that the set being iterated upon may change
during the course of iteration. Because of this
dynamicism, direct iteration upon structures
such as linked lists, directed graphs, and the
like is inadvisable. A reference held by a client
to the next element of an iteration may become
invalid due to the operation of another client
upon the set. For example in a linked list,
should a linked element regarded as the next
element of traversal by one client be removed
from the list by another client, the first client
will have the nasty problem not only of having
a next reference to an element that no longer

6



List Header

Element 0

Element 1

Element 2

Element 3

GPositIdent El 0

Ident El 1

Ident El 2

Ident El 3

GPositIdent El 0

Ident El 1

Ident El 2

Ident El 3

Figure 7: An Initialized GPosit Iterator

exists, but also of having to re-establish its cur-
rent operating position in that list.

A solution to this problem is, of course, pos-
sible by the simple expedient of locking up the
entire structure on which the iteration is to oc-
cur, perhaps through some protocol of obtain-
ing a Read lock on a header or controller ele-
ment. The difficulty with this solution is ex-
actly what it does: it locks up the entire struc-
ture for the duration of the iteration. If one
assumes that iterative processes will be inher-
ently fast, that multiple iterators on a given set
will be generally rare, or that such iterations
will be generally disruptive of simultaneous op-
erations anyway, then such a policy is, per-
haps, not a bad choice. On the other hand,
if any or all of the opposites are generally true,
then locking up entire iterative structures for
iterative traversals very quickly leads to one it-
erator blocking all others for the duration of its
operation.

To solve this problem, something called a po-
sitional iterator has been devised in the form
of the GPosit interface. A private instance of
this interface is obtained for each client iter-
ation. The GPosit instance is initialized with
the identifications of each element of the iter-
ative set, as depicted in Figure 7. This initial-
ization does, indeed, employ the solution above

of locking the entire iterative set for the dura-
tion of that initialization; however, it is hoped
(if not proven by practical experience) that the
traversal for the purpose of identification only
will be reliably faster than traversal for the real
purpose of iterative operation, whatever that
real computational purpose might be. For the
deadlock operation, this means that the lock
instance will (quickly) scan all of the lock con-
texts holding a conflicting lock on that lock in-
stance and load their identifications into the
GPosit iterator supplied by the client’s lock con-
text deadlock algorithm. Because of the inter-
nal arrangements made in the lock interface,
this process proceeds with considerable effi-
ciency.

The next key element of this set iteration
scheme is that, as a final step of iterator ini-
tialization, the iterator instance is made a pri-
mative successor of the interface instance con-
trolling additions to and removals from the iter-
ative set. In the case of the deadlock algorithm,
this means that each GLock instance initializ-
ing an iterator makes that iterator a succes-
sor of itself and, in this application, also notes
the lock level with which the iterator was con-
cerned. In other iterative sets, this requirement
to be a successor of a controlling instance does
place a restriction upon such traversable struc-

7



List Header

Element 0

Element 4

Element 1

Element 2

Element 5

Element 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

Next

Done

Done

New

Figure 8: Effect of Set Additions on an Operating Iterator

tures: some single instance must be that con-
trolling, cognizant point. Thus, a linked list
cannot be regarded as a perfectly circular list
in which any element may be momentarily re-
garded as the head. Instead, one element must
act as the head in all cases so that a central
point of control for iterative operations can be
maintained.

Having received an iterator, a client may then
obtain element identifications from that itera-
tor at its leisure, performing such protracted
operations as may be its wont. Provision is
made for forward and backward traversals of
the set, the identification of set elements in var-
ious ways, and for definitive detection of the
end-of-set condition.

When the actual iterative set changes, it is
the responsiblity of the central point of con-
trol to locate each GPosit iterative set successor
and notify it of the change. In the case of the
deadlock operation, this means that the grant-
ing or releasing of a conflicting lock results in
the notification of the positional iterator of that
change in lock status. (Note that this notifica-

tion process is sensitive to the lock level asso-
ciated with each iteration and results in actual
notification of the iterator only when that lock
event is of interest to that deadlock operation.)

By encapsulating the iterative identification
operation in a separate interface instance, a
key difference in the treatment of iterative set
events is possible. The actual set, the linked
list structure or the map of contexts hold-
ing locks, may be appropriately changed in
response to the event, just as it should be.
Meanwhile, the notified GPosit iterator instance
makes crucially different adjustments. In the
event of addition to the set as shown in Figure
8 (which continues the example of Figure 7 on
page 7), not only are the identifications of new
elements added at the appropriate point, but
the identification of each new element is also
retained for special consideration at the time of
the next iterative step by the client. But the
most important difference is upon a removal
event as shown in the example continued by
Figure 9: the identification of the removed el-
ement is not actually itself removed, but only

8



List Header

Element 0

Element 4

Element 1

Element 5

Element 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

Next, Removed

Done

Done

Done

Figure 9: Effect of a Removal from a Set on an Operating Iterator

marked as having been removed. Thus, at the
next iterative step, should that removed ele-
ment also be the next element of the iteration,
the position in the set is not lost. It is only
necessary for the iteration to recognize the re-
moved status of the next element identification
and step over it before reporting the (new) next
position to the client.

The treatment of the element addition event
by the positional iterator brings on new pos-
sibilities. Generally, set iteration is considered
an ordered process, proceeding for example for-
ward through a linked list; however, with the
positional iterator it is possible to consider the
presense of newly added set elements at the
time of the next iterative step. If such elements
are still further on from the present position of
the iteration (as identification element 5 is in
Figure 8 on page 8), then they may be simply
left to consideration in their proper order; how-
ever, should the iteration already have passed
the position of one or more newly added ele-
ments (as is the case for identification element
4 in Figure 8), it is possible (optionally) to back

the iteration up to the point of the earliest such
added element. Since the iterative set inter-
face keeps track of both elements done and el-
ements removed, such backing up does not re-
peat iterative steps, but merely makes the it-
eration unpredictably non-monotonic in its na-
ture.

In application to the case of deadlock detec-
tion, a newly granted lock introducing a new,
alternate deadlock condition can be detected
dynamically as it occurs. Alternatively, should
a reciprocal deadlock condition be preemptively
cured by the releasing of the locks held by an-
other client, the release of those locks will also
be dynamically noted and avoid the finding of a
deadlock condition that, in fact, no longer ex-
ists. The key point, though, is that while a par-
ticular client context is involved in the poten-
tially lengthy process of deadlock assessment,
lock operations for locks involved in that is-
sue can continue. Thus, other clients who in
fact come into no deadlocked contention with
the assessing client may continue lock trans-
actions and perform useful work.

9



4 Additional Commentary

When the iterative set is internally held, as it
is in the case of the GLock interface, some so-
lution in the manner of the positional iterator
is mandatory to expose that which is otherwise
concealed; however, in the case of exposed iter-
ative structure, as the linked list used in the ex-
amples above, such a solution is not required.
Direct iteration of such exposed structures is
clearly possible. In the case of a linked list, the
simple expedient of maintaining a Read lock on
the current iteration item will assure that some
other accessor does not succeed in removing
that item from the list.

Despite the fact that the positional iterator
is not strictly necessary in the case of exposed
structures, the current expectation is that it
will form the basis of the standard iterative
mechanism in the CORBA-served PIA migra-
tion. The following reasons are put forward in
support of this outlook.

1. The use of the positional iterator interface
will bring, ipso facto, unity to the itera-
tive form. In so doing, coding will be more
predictable and less sensitive to the struc-
tural form supporting the operation. Later
changes in structural form due to software
revisions and the like will have less impact.

2. The introduction of derived positional iter-
ator interface forms provides the opportu-
nity to add further internal iterative context
for those structural forms for which it is
necessary without the necessity of disrupt-
ing the basic iterative coding form estab-
lished by the positional iterator interface.
Such derived forms might, indeed, provide
direct iteration upon a structure without
altering the basic coding form.

3. The ability of the positional iterator to back
up to newly added set elements is a use-
ful feature not available to direct iterations.
Providing an iterative set event notification

to direct iteration code would be an ex-
tremely complicated task.

5 Concluding Remarks

A solution to the problem of distributed lock
management, deadlock detection, and the iter-
ation on dynamic sets needed to solve the dead-
lock detection problem has been presented.
The presented solution is neither perfect nor
the only solution possible; however, the work
presented is presented as neither of those,
but only as a workable solution to a practical
problem. It must be remembered that in any
multi-accessor, asynchronous operating envi-
ronment, solutions always represent an engi-
neering tradeoff between flexibility and perfec-
tion.

10


